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The particle trajectories of nonlinear capillary waves are derived. The properties of 
the surface and subsurface particles are presented in exact analytic form, up to and 
including the highest wave. It is found that the orbits of the steeper waves are neither 
circular nor closed. For the highest wave, a particle moves through a distance [XI 
equal to 7.99556h in one orbit, where h is the wavelength. It moves with an average 
horizontal drift velocity U equal to 0.88883c, where c is the phase speed of the wave. 
In addition, the subsurface particles (at depths nearly three-quarters that of the 
wavelength) move at speeds up to one-tenth that of surface particles. 

1. Introduction 
Studies of particle trajectories in steady, steep, symmetric, deep-water gravity 

waves have revealed interesting results as to the nature of the surface horizontal drift 
velocity U. This motion of particles in the direction of wave propagation results from 
the particle orbits not being closed in steep waves. In contrast, for very-small- 
amplitude waves, the trajectories are circular (elliptic in shallow water) and there is 
no drift velocity. Two recent papers on the subject have been by Longuet-Higgins 
(1979) and Srokosz (1981). These studies have used either simple approximations to 
the steep gravity-wave profile or high-order series expansions. 

In the case of capillary waves, an exact solution for the wave profile is available, 
as derived by Crapper (1957). Using this solution and the general method for 
calculating particle trajectories given by Longuet-Higgins (1979), we derive exact 
expressions for the horizontal drift velocity of surface and subsurface particles of a 
wave of arbitrary height. We also present exact expressions for the coordinates of 
the trajectories in a frame of reference stationary with respect to great depths. For 
the highest wave, we find that the surface particles travel nearly eight wavelengths 
in the course of completing one orbit. They take nearly nine times as long to complete 
their orbit as do particles at great depths, and their time-averaged drift velocity is 
almost nine-tenths that of the phase speed of the wave. Strong horizontal motion 
persists at  depths up to three-quarters that of the wavelength. 

In $2 we describe the problem of the propagation of nonlinear capillary waves in 
deep water and introduce the exact solution of Crapper (1957). In $3 we briefly 
describe the method of Longuet-Higgins (1979) for deriving the trajectories and 
present exact results for complete orbits of surface and subsurface particles. In  $4, 
we present results for the coordinates of these trajectories in a stationary reference 
frame, as well as for the drift-velocity ratio U l c  as a function of the mean depth of 
the fluid particles. 
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2. Capillary waves 
We consider steady, symmetric, periodic, nonlinear capillary waves which propagate 

on the surface of an incompressible, inviscid infinitely deep fluid. The motion in the 
fluid is taken to be two-dimensional and irrotational and the wave is moving to the 
right with speed c. We reduce the flow to a steady state by moving in a frame of 
reference with the waves. We choose Cartesian axes with x measured horizontally to 
the left and y vertically downwards. For the steady motion, we denote the velocity 
potential by # and the stream function by q9. At the free surface, we have q9 = 0 and 
$ > 0 below (increasing y). The trough of one wave corresponds to q5 = 0. 

This problem was solved exactly for nonlinear waves in a celebrated paper by 
Crapper (1957). If 

and 

and denote the wavenumber by k (so the wavelength A = 2n/k), then Crapper found 

z = x+iy (2.1) 

x = #+ill. (2.2) 

where 
S 1-A' 

c2 =-- 
pk 1 + A 2 '  

4A _ -  - H 
A R(1-A')' 

Here we denote the surface tension by S and the density by p. The crest-to-trough 
wave height is given by H .  Some wave profiles are plotted in figure 1. The highest 
wave encloses a bubble in its trough, for H / A  = 0.7298. This solution has the property 
that any streamline of a wave can be taken as the free surface of a lower wave. Thus, 
throughout this paper, we shall consider the highest wave and its streamlines only. 
From (2.5), this means setting A = 0.4547 once and for all, although we shall retain 
the symbol A for brevity. 

The set of equations (2.3)-(2.5) ensures the satisfaction of Bernoulli's condition of 
constant pressure on the free surface, together with uniform flow with speed c to the 
left a t  great depths. In  addition, Laplace's equation in # is satisfied in the interior. 
(For full details see Crapper 1957, $2). 

3. Method of solution 
Longuet-Higgins (1979, $3) sets out a general method for time integration of 

particle trajectories in steady flows. From his equation (3.3), we find that the time 
t taken to travel from the point # = to # = #, along the streamline $ = $c is given 

Thus from z = z ( x )  we can find z as a function oft. In  a frame of reference stationary 
with respect to great depths, we subtract the term ct from the horizontal coordinate 
x to obtain 

The motion in the (X, Y)-plane constitutes the trajectory of a particle. 
(3.2) x= x-ct, Y = y. 
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FIQURE 1. Pure capillary-wave streamlines for $ / c A  = 0, 0.037, 0.095, 0.177, 0.287, 0.397, 0.450 
[after Crapper 1957). 

In  order to calculate t ,  we first obtain dz/dX from (2 .3 ) .  Thus 

(3.3) 

and, from (3.1)' we find that the total time T taken to complete one orbit is given 

9 (3.4) 

where we set 8 = k$ /c  and B = A exp ( -  k$ /c ) .  This integral can be calculated 
explicitly. In fact we have 

where 

by 
1 2% ( 1  + 4 ~ 2 + ~ 4 - 4 ~ ( 1  + ~ 2 )  c o s e + 2 ~ 2 c o s 2 e )  

T = z J 0  (1 + 2~ cos e + ~ 2 ) 2  

ckT= (1+4B2+B4)  Ko-4B(1+B2)K1+2B2K2,  (3.5) 

This integral (3.6) can be rewritten as 

(3.7) 

where we have set [ = eis. It is a simple matter to calculate the residue at the pole 
[ = - B. Note that the pole at [ = - 1/B lies outside the unit circle since B c 1 always, 
so it does not contribute to the integral. 

We find 
2 q  - B)" 

K ,  = [ ( n + l ) - ( n - 1 ) B 2 ] ,  
(1 - B2)3 
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and so from (3.5) and (3.8) we have 

CT 1+13B2+19B4-Bs - - _  
h (1 - ~ 2 1 3  

(3.9) 

Equation (3.9) is an exact result for the total time taken to complete one orbit along 
the streamline $ = $,. Thus for the free surface of the highest wave, where $, = 0, 
we find 

(3.10) 
cT 
A 
_ -  - 8.9956, 

or since 

C =  2.0323 - 0" 
from (2.4), we have 

(3.11) 

(3.12) 

Thus a particle on the free surface of the highest pure capillary wave takes nearly 
nine times longer to complete its orbit than does a particle at great depths. For pure 
gravity waves, Longuet-Higgins (1979) has shown that c T / A  = 1.377. 

In  time T the particle has advanced a distance cT-A, and so its average speed 
U is given by - 

From (3.9) we find 
U 16B2(1 + B2)  -= 
c 1 + 13B2 + 19B4 - B8 ' 

and for the highest wave we have 
U 
- = 0.8888. 
C 

(3.13) 

(3.14) 

This is to be compared with the result for the highest gravity wave, where 
U / c  = 0.274. 

Also in time T ,  the particle moves through a certain distance [XJ, conveniently 
expressed as a proportion of the main wavelength : 

[XI cT-h CT 
A h A 

- 1.  -- 

Thus from (3.9) we have 

[XI - 16B2( 1 + B2) -- 
h (1  - 13213 

and for the highest wave we find 

-- ' X I  - 7.9956. 
h 

(3.15) 

(3.16) 

For the highest gravity wave the corresponding result is [m/h = 0.337. 
In  the limit of small amplitude (that is retaining only terms quadratic in the wave 

steepness), the results given by (3.9), (3.13) and (3.15) agree with the classical solution 
of Stokes (see Lamb 1932, chap. 9). 
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FIQURE 2. The contour r used to evaluate the integral in (4.1). 

4. Surface and subsurface particle trajectories 
In order to calculate the exact position of each particle using (3.2), we have to know 

the time it takes to reach that position, starting from (say) the trough. In other words, 
we must evaluate (3.1) from 4 = 0 to 4 = ac/lc, where 0 < a < 2n. To do this we 
consider the integral 

where q = reie, the contour r is given in figure 2, and p is a positive integer. By 
considering the three segments of the contour (6 = a ;  r = 0-t l}, (6 = a-t2n; r = 1) 
and (0 = 0;  r = 1 + O } ,  we find 

dq = c" (1  + Beie)z (1  + Be-ie)z 

- iqp &p-W 
d6 

We note that the value of the contour integral on the left-hand side of (4.2) is 
unchanged if we deform r into the contour r = 1, that is, the unit circle. In fact, 

r 

Thus from (4.2) and (4.3) we find 

where 

and 

cos (p- 1)  6 
d6 = Re { - iei(p-')& I p } ,  s," (1  + Beie)2 (1 + Be-ie)2 

By analogy with (3.4) we require p = 1,2 ,3  only. 
We find 

(4.4) 

(4.7) 
1 + (C12 (1 +C*) 1+2C+ICI2 I -  

- (1 - ICl")" log C*(l +c)- (1  - IC)2)2 (1  + C )  (1 +C*) 
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(4.8) 
and 2c* (1+C*) + 1 + 2c* + Icy 

IZ = ( 1  - lCI2)3 log C*(l +C) ( 1  - /C12)2 (1  +C) ( 1  +C*)’ 
and that 

(4.9) 

cz( 1 - IC12)3 
I3 = 

- 1 + C*( 1 + ICl2) + /CI4 
C( 1 - IC12)Z ( 1  + C) ( 1  + C*) . 

Then, by substituting (4.7)-(4.9) into (4.4) and using (4.6), we obtain 

1+B2 2B  sin a 
( 1  -B2)2 ( 1  + B2 + 2B cos 01) ’ = (1  -B2)3 (a-,u)- (4.10) 

(4.1 1 )  

and that 

{B4(3-B2)  ~ l + $ p (  1 + B2) ( 1  -4B2 + B4)} 
1 

K z ( a )  = B2( 1 - B2)3 

( 1  + B4) sin a 
- (4.12) 

B(1- B2)2 ( 1  + B2 + 2B cos a) ’ where 
B sin a 

1 + B cosa * 
tani,u = (4.13) 

The parameter p occurs naturally when taking the imaginary part of the log terms 
in (4.7)-(4.9). 

= ac/k on the profile from the trough is given, 
by analogy with (3.4), by 

&(a) = ( 1  +4B2+B4)KO(~)-4B(1+B2)K,(a)+2B2K2(~). (4.14) 

The time t(a) to reach the point 

Upon substituting (4.10)-(4.12) into (4.14) we eventually find 

a(l+ 13B2+ 19B4-BE) - l 6pB2(1  +B2) 
ckt (a)  = 

( 1  - ~ 2 ) 3  ( 1  - B2)3 
8B(1+ B2)2 sina 

- (4.15) 

When a = 27c we have sinu = 0, ,u = 0 and t(27c) = T ,  so we recover (3.9), as expected. 
In order to calculate the orbit of the particle, we must evaluate X and Y from (3.2). 

( 1  - B2)2 ( 1  +B2 +2B C O S ~ )  ’ 

From (2.3) we find 

and so, using (4.15) 

4 B  sin a 
1 + B2+ 2B cosa ’ kx = a- 

k@ 4 B ( B  + cos a )  
ky = -+ 

c (1+B2+2Bcosa)’ 

and (3.2), we get 

(4.16) 

(4.17) 

16B2( 1 + B2) 4B( 1 + 6B2 + B4) sin a 
(4.18) 

1+B2+2Bcosa ’ 
kX = 

( 1  - B2)3 

k@ 4 B ( B  + cos a )  
k Y = - +  

c 1+B2+2Bcosa’ 
(4.19) 

where B = 0.4547 exp ( - k @ / c ) .  
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(b ) 
FIGURE 3. (a) Particle trajectories for capillary waves along streamlines $/ch = 0,0.037, and 0.095; 
(b) Full trajectories for $/ch = 0.177, 0.287, 0.397, 0.450, together with part trajectories from 
figure 3(a). 

Equations (4.18) and (4.19) are exact, nonlinear expressions for the particle 
trajectories of pure capillary waves. In the limit of great depths below the surface 
(or equivalently small-amplitude waves), B 4 1 and we find kX z 4B sin a, 
k Y - k$ /c  !z 4B cos a ; that is, 

( k X ) 2 + ( k Y - y ) 2  c = 16B2. (4.20) 

This corresponds to circular paths of radius 4B/k, centre (0, $ / c ) .  
The particle trajectories of waves given in figure 1 are drawn in figures 3 ( a ,  b ) .  This 

division is necessary for reasons of scale. In figure 3 ( a )  we have illustrated complete 
trajectories for $ / c A  = 0, 0.037 and 0.095. In  figure 3 ( b )  we have trajectories for 
$/ch = 0.177,0.287,0.397 and 0.450, as well as the relevant parts of the trajectories 
of figure 3 (a ) .  We can clearly see that as @ / c A  increases, the trajectories become less 
open and more circular, tending to the form given in (4.20). The most striking feature 
of figure 3 is the enormous distance through which the surface particles of the high 
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0 
0.037 
0.095 
0.177 
0.200 
0.250 
0.287 
0.300 
0.350 
0.397 
0.450 
0.500 

0.7298 
0.5274 
0.3400 
0.1947 
0.1676 
0.1214 
0.0959 
0.0883 
0.0643 
0.0478 
0.0343 
0.0250 

7.9956 
3.5632 
1.2934 
0.3914 
0.2866 
0.1481 
0.0918 
0.0777 
0.041 1 
0.0227 
0.01 16 
0.0062 

8.9956 
4.5632 
2.2934 
1.3914 
1.2866 
1.1481 
1.0918 
1.0777 
1.0411 
1.0227 
1.0116 
1.0062 

0.8888 
0.7808 
0.5640 
0.2812 
0.2228 
0.1290 
0.0841 
0.0721 
0.0395 
0.0222 
0.0115 
0.0062 

TABLE 1. Particle parameters for complete orbits of particles in capillary waves 

To -Tr 
x 

s 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

-1.0 L 
FIQURE 4. Drift velocity ratio U / c  as a function of the mean displacement of fluid particles 

(&- 8, ) / A .  

waves travel. Their orbits are not closed a t  all. This phenomenon persists until 
@/ch = 0.1 approximately, where the particle still advances over one wavelength in 
each orbit. When @/ch = 0.06998 (B = 0.29291) there is a cusp in the orbit. 

A t  greater depths the particle orbits involve a circular form of motion. This has 
a dramatic effect on the distance advanced in one orbit, but not on the time taken. 
Details of all the orbits in figure 3 are given in table 1. There we see that although 
the surface particles take nearly nine times as long to complete one orbit as do the 
particles at @/ch = 0.450, they travel nearly seven hundred times as far. Put another 
way, in the time i t  takes a surface particle of the highest wave to complete one orbit, 
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X 
h 
- 

0 
- 0.0632 
-0.1331 
- 0.2193 
-0.3396 
-0.5334 
-0.9001 
- 1.3557 
- 2.1264 
-3.3026 
-3.9978 

Y 
h 
- 

0.1990 
0.1953 
0.1833 
0.1599 
0.1185 
0.0455 

-0.0844 
-0.2177 
-0.3807 
-0.5108 
-0.5308 

0 
0.0351 
0.0724 
0.1156 
0.1727 
0.2638 
0.4450 
0.6862 
1.1176 
1.8026 
2.2131 

TABLE 2. Coordinates and arrival times from the trough of particles on the 
surface of the highest capillary wave 

it  has advanced more than 77.5 times the distance travelled by a particle a t  
$/ch = 0.450 in the same time. 

In  table 1 we have also given results for the drift velocity U as a function of the 
phase speed c of the wave. It turns out to be more convenient to plot U / c  against 
the mean displacement of the streamline from the surface. Thus from (4.19) we 
calculate ylh, where 

(4.21) 

Thus, using (4.17), (4.21) and results from $3 of Hogan (1979), we find along 11. = $c ,  

(4.22) 

and so the mean level of the free surface of the highest wave $c = 0, B = 0.4547 is 
yo/h = -0.4183. I n  figure 4 we have plotted U / c  against (j jo-qc)/A. We note that 
a significant' amount of fluid is being transported forward. In fact we have to go to 
a depth of ih to reduce U / c  to one-tenth of its value a t  the free surface. The classical 
result for this case can be written as 

~ 

U 
- C = 16A2 exp (-2k(ijc-jj,,)), (4.23) 

where yo = 0 and yc = @Jc. At great depths, that is, large value of @Jc,  we find 
that this result is in very close agreement with the exponential tail of figure 4. At 
the surface, however, (4.23) gives U / c  = 3.3076. This is a considerable overprediction 
of the exact result, U/c = 0.8888, given in (3.14). 

Finally, in table 2 we present results for the coordinates of particle trajectories for 
the surface streamline of the highest capillary wave. It is clear that the particle spends 
very little time in the neighbourhood of the trough. 

5. Discussion 
The remarkable results contained in $93 and 4 show conclusively that the orbits 

in steep capillary waves are neither circular nor closed. It must be emphasized just 
9 B L X  143 
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how much of the bulk of fluid moves forward during the passage of a steep capillary 
wave. In addition the particles spend most of their time near the wave crests. These 
results contrast strongly with those derived by Longuet-Higgins (1979) and Srokosz 
(1981) for steep gravity waves. 

The effects of finite depth can be included using the work of Kinnersley (1976), 
who derived exact solutions in a similar manner to Crapper (1957). Gravity can also 
be included, albeit numerically, using the high-order solutions of Hogan (1980, 1981). 

Other effects have been neglected, including viscosity and surface-tension gradients. 
In  this latter case, another type of motion is possible, namely longitudinal waves 
(Lucassen 1968). This occurs because the surface-tension gradient can support a 
tangential stress difference across the interface. Even for infinitesimal wave ampli- 
tudes, the particle trajectories are known to be non-circular (but still closed), with the 
exact form being a functon of the extensibility, or dilational modulus, of the surface 
(Lucassen-Reynders & Lucassen 1969, figure 4). Even in the absence of surface-tension 
gradients, viscosity will affect the behaviour a t  the surface, owing to the presence 
of a boundary layer of thickness N ( v / g ) i ,  where v is the kinematic viscosity and cr 
is the frequency of the waves. It is well known that for gravity waves, viscosity 
increases the drift velocity, with the velocity gradient being double that of the 
inviscid case (Longuet-Higgins 1953, 1960). 

The author gratefully acknowledges support from King’s College, Cambridge, in 
the form of a Junior Research Fellowship. This work was initiated by a remark of 
Dr J. C. Scott concerning some of his unpublished experimental results. 

R E F E R E N C E S  

CRAPPER, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. 

HOGAN, S. J. 1979 Some effects of surface tension on steep water waves. J .  Fluid Mech. 91,167-180. 
HOGAN, S. J. 1980 Some effects of surface tension on steep water waves. Part 2. J. Fluid Mech. 

HOGAN, S .  J. 1981 Some effects of surface tension on steep water waves. Part 3. J. Fluid Mech. 

KINNERSLEY, W. 1976 Exact large-amplitude capillary waves on sheets of fluid. J .  Fluid Mech. 
77, 229-241. 

LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. 
LONGUET-HIGGINS, M. S. 1953 Mass transport in water waves. Phil. Trans. R. SOC. Lond. A 245, 

535-58 1. 
LONGUET-HICGINS, M. S. 1960 Mass transport in the boundary layer a t  a free oscillating surface. 

J. Fluid Mech. 8, 293-306. 
LONGUET-HIGGINS, M. S. 1979 The trajectories of particles in steep, symmetric gravity waves. 

J .  Fluid Mech. 94, 497-517. 
LUCASSEN, J. 1968 Longitudinal capillary waves. Part I. Theory. Trans. Faraday SOC. 64, 

LUCASSEN-REYNDERS, E. H. & LUCASSEN, J. 1969 Properties of capillary waves. Adv. Coll. 

SROKOSZ, M. A. 1981 A note on particle trajectories in the highest wave. J .  Fluid Mech. 111, 

J .  Fluid Mech. 2, 532-540. 

96, 417445. 

110, 381-410. 

2221-2229. 

Interface Sci. 2, 347-395. 

491-495. 


